PAPER CHROMATOGRAPHY OF MIXTURES OF PHENOLIC COMPOUNDS

P. COLOMBO, D. CORBETTA, A. PIROTTA AND G. RUFFINI Cartiera Vita Mayer & Co., Research Division, Milan (Italy)

(Received January 31st, 1961)

INTRODUCTION

Chromatography could greatly simplify the analysis of the degradation products of hardwood lignin, provided the use of a single eluent could give, on the sheets, a good separation of the main degradation products, viz.: vanillic, p-hydroxybenzoic and syringic aldehydes and acids, and ferulic and p-coumaric acids.

Many authors have published papers on the qualitative and quantitative analysis of phenolic compounds by paper chromatography^{1,2}. In the generally employed technique^{2,4-7} two or more eluents are used, and even recently, in a series of papers on the alkaline hydrolysis of hardwoods, PEARL and co-workers⁸⁻¹¹ were able to separate the above-mentioned compounds by using as many as four eluents.

If we consider REI0's¹² determination of the R_F values of 450 compounds, we find that none of the six eluents used by him gives a complete separation of all the eight products; to obtain a separation good enough for quantitative purposes, the R_F values must differ by at least 0.04. We have succeeded in developing a chromatographic technique with which a mixture of these compounds can be separated with a single eluent for qualitative and quantitative evaluation. At the end of this paper the R_F values of 34 pure phenolic compounds obtained with our technique are given.

EXPERIMENTAL

In our experiments, an hermetically sealed double-walled chromatographic tank was used, generally at room temperature $(20 \pm 2^{\circ})$; for experiments at other temperatures, the tank was placed in a thermostatically controlled oven. The sheets were cut from Whatman papers, across¹ the fibre direction.

Descending elution was employed; the distance of the starting line from the edge was 10 cm. Ethanolic solutions of the phenolic compounds with concentrations of 10 $\mu g/\mu l$ were applied on the starting line as spots of 2 μl for each component, either pure or in a mixture.

The eluent was freshly prepared by shaking equal volumes of *n*-butanol and 2% aqueous ammonia for 10 min; the aqueous phase was separated and put at the bottom of the tank.

467

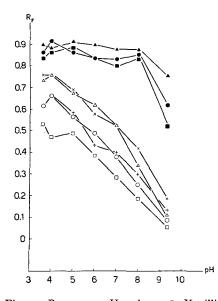
Paper and eluent

Of the four basic Whatman papers Nos. 1, 7, 20, 54, cut across the fibre direction, we found that Whatman No. 7 is the most suitable for the separation of single compounds; dense, uniform, fairly round spots without trails or beards were obtained, with an elution speed of 33 to 35 cm in 15 h. However, separation of the substances from a mixture was impossible; the three aldehydes were not resolved, nor were vanillic and p-hydroxybenzoic acid.

Various authors have obtained better results by using buffered paper. Other variables being kept constant, the R_F values are more reproducible and the separation is somewhat better when buffered paper is used, due to complex formation or to the influence of the pH value at which the paper has been conditioned.

McFARREN¹³ found that the molarity of the buffer is of no consequence, whereas the R_F values are sensitive to the particular salt used in preparing the buffer solution. We found, for instance, that at the same pH value the results were different when phosphate-buffered or borate-buffered papers were used, probably because phenols can react with the boric ion.

GARDON AND LEOPOLD¹⁴ applied McFARREN'S technique to the study of the products of lignin oxidation; the R_F 's were determined for each compound on a series of papers buffered at different pH values. Since the R_F 's of ionisable substances are sensitive to pH variations, a diagram of R_F versus pH will show the values of the pH at which the separation of the different compounds is optimal.


We impregnated Whatman No. 7 sheets with mixtures of H_3BO_3 and IN NaOH, in a pH range from 3.5 to 9.2. It was found that care is needed to obtain a uniformly impregnated sheet, which is necessary to prevent the formation of irregular spots. A sufficiently uniform impregnation was never obtained by spraying, so we resorted to immersing the sheet in the appropriate bath, removing the excess of solution by gently pressing the sheet between two filter papers, and then allowing it to dry in air.

At this point we also changed the eluent, going over to *n*-butanol saturated with the same solutions that were used to impregnate the sheets, in order to prevent pH gradients along the sheets. Otherwise the mobility of the spots would be so high that separation and identification would be impaired.

In Fig. 1 the diagram of R_F versus pH for the eight pure compounds studied is shown; the hydroxyaldehydes are best separated at pH 9.3 and the phenolic acids at pH 8.0. On repeating the experiment with a mixture of the various compounds, no complete separation could be obtained whatever pH value was used. This might be due to an interaction of the molecules of the different phenolic compounds, so that their mobility is different from that of the pure compounds.

We repeated the experiments with pure products on paper impregnated at four pH values, while 10 ml of a 10 % NH₃ solution was placed at the bottom of the chromatographic tank, together with the aqueous phase of the eluent (*n*-butanol saturated with the impregnating solution). Fig. 2 shows a diagram of the R_F values versus pH; it can be seen that the separation of the phenolic compounds is markedly improved. We also found that the pH values of the sheets which varied from 3.5 to 8.5 at the

beginning of the experiment, were all 8.6 at the end of the experiment. In the case of papers impregnated at pH 9.3, however, not only the pH remained the same throughout the whole experiment, but also the relative positions of the spots were almost unaltered; at this value of the pH, the presence of $\rm NH_3$ vapour in the vessel is of no consequence.

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 3 4 5 6 7 8 9 10

Fig. 1. R_F versus pH values. ● Vanillin;
Syringaldehyde; ▲ p-Hydroxybenzaldehyde; ○ Vanillic acid; △ p-Hydroxybenzoic acid; □ Syringic acid; + Ferulic acid; × p-Coumaric acid.

Fig. 2. R_F versus pH values, in the presence of NH₃ vapours. ● Vanillin; ■ Syringaldehyde;
▲ p-Hydroxybenzaldehyde; ○ Vanillic acid; △ p-Hydroxybenzoic acid; □ Syringic acid; + Ferulic acid; × p-Coumaric acid.

On the other hand, the separation of the mixture was appreciably improved by the presence of ammonia vapours at all pH values. It is not necessary to buffer the paper, a simple impregnation with boric acid is sufficient; it is also not necessary to saturate the eluent with the impregnating solution.

Accordingly, in all successive experiments, the sheets were impregnated with a H_3BO_3 solution saturated at 20°, and the eluent was *n*-butanol saturated with a 2% NH_3 solution, the aqueous phase of which was placed at the bottom of the vessel.

At the end of the elution, the pH of the sheet was uniformly 8.6 from the starting line to the eluent front, and from there to the edge of the paper. This procedure has given the best separation of a mixture of ten phenolic compounds, whose R_F values are given in Table I.

The chromatographic separation of a mixture of phenolic compounds by this technique is very sensitive to the concentration of ammonia in the aqueous solution used to prepare the eluent. Increasing the concentration of ammonia produces a slowing down of the phenolic acids and hydroxyaldehydes: at an ammonia concentration higher than 5% the separation is seriously impaired. On the other hand, if the am-

monia concentration is raised to 10%, the separation of those phenolic compounds that run with the eluent at lower ammonia concentrations is improved. An R_F of 0.88 is obtained for 2,6-dimethoxyphenol and one of 0.76 for resorcinol, instead of the values 0.86 and 0.81 respectively, as given in Table I, and hence the separation is much better.

TABLE	I
-------	---

 R_F values obtained on chromatography of a mixture of ten phenolic compounds, and the effect of temperature

701	$R_{F}v$	alues
Phenolic compounds	Tank at 20°	Tank at 35°
Syringic acid	0.16	0.15
Vanillic acid	0.20	0.19
p-Hydroxybenzoic acid	0.24	0.23
Ferulic acid	0.32	0.33
<i>p</i> -Coumaric acid	0.39	0.40
Syringaldehyde	0.52	0.52
Vanillin	0.62	0.64
Hydroxybenzaldehyde	0.72	0.71
Resorcinol	0.81	
2,6-Dimethoxyphenol	0.86	

Ambient factors

The temperature variations in the laboratory were $\pm 2^{\circ}$; with our final technique, the R_F values of the various compounds were always constant. The relative positions of the spots of the compounds are the same, although their absolute positions may change, but the variations in the R_F values are never higher than 0.02. Some experiments were made at 35°, at which the solvent speed was somewhat increased and consequently also the mobilities of the spots, but the R_F 's were unchanged, as is shown in the third column of Table I.

The saturation of the atmosphere of the chromatographic tank and the equilibration of the sheet are much more important. Only the aqueous phase should be put at the bottom of the tank; an excess of ammonia or of the phase rich in organic solvent gives elongated spots.

If the sheets are left for a long time in the tank before starting the elution, very diffuse spots with overlapping trails are produced. We found that good spots are obtained if the paper is allowed to equilibrate for one hour in the vessel.

Spraying solutions

All the classical developers for phenolic compounds^{1, 2}, as well as some new ones, were tested and finally the following techniques were adopted:

(1) *Mäule's test.* The chromatogram is first dried, then exposed for ten minutes to chlorine vapours, and finally sprayed with a 10% Na₂SO₃ solution. Spots of syringic acid or aldehyde assume a cherry-red colour. It was found that on examination with U.V. light some compounds show characteristic yellow or blue spots.

- (2) Other tests. The chromatogram is subjected to the following treatment:
- (a) U.V. examination before and after exposure to ammonia vapours.

(b) Development of the phenolic acids: the sheet is first sprayed with a solution of diazotized sulphanilic acid prepared according to BLOCK¹⁵ and dried in air. Subsequently, it is exposed to ammonia vapours. At this moment, coloured spots appear, but the colours are not brilliant and not fast enough; they fade in a short time.

(c) We then introduced a second spray, this time with a solution of diazotized p-nitroaniline prepared according to BRAY¹⁶; this changes the colours, enhances their brilliance and makes them completely fast even after weeks of exposure to air.

The sheet is dried at 50°. The hues of the spots are characteristic for the various acids. Care has to be exercised when carrying out this last spray, in order to prevent soaking of the paper, otherwise a yellowish background appears and the sheets become brittle when dried, due to the action of the hydrochloric acid present in the solution. Of paramount importance in this technique is the exposure of the sheet to ammonia vapour between the two sprayings with the diazotized solutions; if this stage is omitted, the benefits obtained by spraying with the second solution are lost.

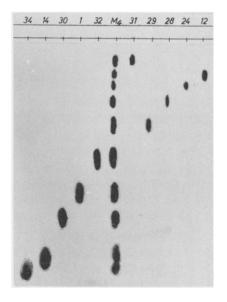


Fig. 3. Chromatographic separation of a mixture of ten phenolic compounds. (12) Vanillic acid;
(24) p-Hydroxybenzoic acid; (28) Ferulic acid; (29) p-Coumaric acid; (31) Syringic acid; (32)
Syringaldehyde; (1) Vanillin; (30) p-Hydroxybenzaldehyde; (14) Resorcinol; (34) 2,6-Dimethoxy-phenol.

(d) Development of the hydroxyaldehydes: the dried sheet is sprayed with a solution obtained by mixing equal volumes of a 0.1 M benzidine solution in ethanol and 1 N hydrochloric acid. The sheet is then dried in an oven at 50°. The colours obtained with this technique are more brilliant than those obtained by spraying with 2,4-dinitrophenylhydrazine. Furthermore, vanillin and syringaldehyde give different colours.

Η	
TABLE	

 R_F values and identification of 34 pure phenolic compounds *

472

CompoundsRFGallic acid0.01Syringic acid0.16CVanillic acid0.16P-Hydroxyben-0.20P-Hydroxyben-0.29Zic acid0.32Catechol0.35Ferulic acid0.35Sinapic acid0.35P-Coumaric acid0.450-Coumaric acid0.46Syringaldehyde0.50CSyringaldehyde0.50							
0.01 0.16 0.20 0.24 0.24 0.35 0.35 0.35 0.42 0.42 0.42 0.46	M äule test	Mäule test Ultraviolet	.A.D	U.V. after expo- sure to NH _s vapours	Diazotized sulphanilic aciá spray	Diarotized sulphanilic acid and p-nitroaniline sprays	Benzidine spray
0.16 0.20 0.24 0.32 0.35 0.35 0.42 0.45 0.46 0.46	Magenta	-	ł	I	Straw-yellow	Straw-yellow	ł
0.16 0.20 0.24 0.25 0.35 0.35 0.35 0.45 0.46 0.46 0.46	27142				33793	33793	
0.20 0.24 0.32 0.35 0.35 0.45 0.45 0.46 0.46	Cherry-red	Water-green	l	ł	Cherry-red	Crimson lake	1
0.20 0.24 0.35 0.35 0.45 0.45 0.46 0.45	22356	24554			22356	21158	
0.24 0.29 0.35 0.35 0.35 0.45 0.45 0.46	1	Lemon-cadmium	1	1	Middle chrome	Kose-pink	1
0.29 0.32 0.35 0.42 0.45 0.46 0.46		33014 Shuchina	İ		33530 Deen cadmium	52350 Gold	[
0.29 0.32 0.35 0.35 0.42 0.42 0.46 0.46	I	3523T	i		13432	33703	
0.32 0.35 0.35 0.42 0.46 0.46 0.46	Zinc vellow	Lemon-cadmium		ļ	Lemon-cadmium	Naples yellow	
0.32 0.35 0.35 0.35 0.35 0.42 0.42 0.46	33434	33814			33814	10371	
0.35 0.35 0.42 0.46 0.46 0.50		Sky-blue	Light blue	Light blue	Pink madder	Light violet	1
0.35 0.35 0.42 0.42 0.46 0.46		35231	15123	15123	lake 31433	37144	
0.35 0.39 0.42 0.46 0.46	herry-red	Turquoise-	Sky-blue	Sky-blue	Cherry-red	Blue-grey	I
0.33 0.42 0.45 0.46 0.50	22356	green 15123	35231	35231 Cold	22356 Cold	36173	
0.39 0.42 0.45 0.46 0.50							
0.42 0.45 0.46 0.50	[34552 Sky-blue	ĺ	33793 Sky-blue	33793 Pale vermilion	Magenta	
0.42 0.45 0.50 0.50		35231		35231	22276	27142	
0.45 0.46 0.50		Sky-blue	Sky-blue	Sky-blue	1	1	i
0.45 0.46 0.50		35231	35231	35231			
0.50 0.50	[Light blue	Sky-blue	Sky-blue	Middle chrome	Hazel	Married a
0.46 0.50 0.52		15123	35231	3523I	3353 ⁸	12648	
0.50	-	Yellow-green	ł		1		I
2 2	Cherry-red	34552 Water-green	!	Light blue		1	Orange chrome
	22356	24554		15123			32246
		Sky-blue	-	[I	
		35231		T :~h4 bl			Middle chrome
V & 1111111 0.00		22814	I	TABLE DINE	r form	1	33538
Trimethylgallic 0.61 I	Magenta	Water-green	Ultramarine	Ultramarine	I		
	27142	34554	25414	25414			
Salicylic acid 0.69	1	Sky-blue	Sky-blue	Sky-blue	Deep cadmium	Gold	1
o i Dimothours		35231	35231 Illtramarine	35231 Illtramarina	13432	33793	Middle chrome
z,4-Lunetuoxy- 0./0 henzaldehvde	Į	Į	25414	25414			33538
0.70	Pale yellow	Sky-blue	Sky-blue	Dark blue	Flesh-pink	Gold	
	23695	35231	35231	15102	21575	33793	

J. Chromatog., 6 (1961) 467-474

P. COLOMBO et al.

Primrose-yellow 23655	3	1						Middle chrome	33538					Primrose-yeilow	23655			-											(U.S.A.).
ł	Gold	33793		Rose-pink	32356 Gold	33793	Deep cadium	13432 		Geranium lake	12197	Flesh-pink	21575	Flesh-pink	21575	Flesh-pink	21575			Flesh-pink	21575	Flesh-pink	21575		Zinc yellow	33434	Hazel	12648	March I. 1056
ł	Gold	33793		Middle chrome	33538 Pale vellow	33481	Straw-yellow	33793		Orange chrome	32246			Flesh-pink	21575	Flesh-pink	21575	ļ		Flesh-pink	21575	Flesh-pink	21575	Pale yellow	23695 Lemon-cadmium	33814	Raw sienna	334 ⁸ 1	(Colour recording of the environ of the chromatograms was narformed according to Rederal Standard No. 505. March 1, 1056 (II.S.A.).
Dark brown 10080	Rose-pink	32356 Skv-blue	35231	I	Water-green	24554	Sky-blue	35231 Water-green	24554	2		-				-		Sky-blue	35231	Mark Land		-		Ĩ					ding to Federal
ļ	Gold	33793 Skv-blue	35231		Water-green	24554	Sky-blue	35231 Water-green	24554	2		Į		-]		Sky-blue	35231			-			ł				and prove
Sky-blue 25231	Yellow-green	24552 Skv-blue	35231	Lemon-cadmium	33 ⁸¹⁴ Skv-blue	35231	Sky-blue	35231 Illtramarine	25414	Yellow-green	34552			Lemon-cadmium	33^{814}	Sky-blue	35231	Sky-blue	35231	Sky-blue	35231	Water-green	34554	Sky-blue	35231 Skv-blue	35231	Yellow-green	34552	
	1	anyuan]			Zinc yellow	33434		Cherry-red	31136			Pale yellow	23695	Magenta	27142	Pale yellow				-		-]		Cherry-red	22356	
0.71	0.71	0.74	+ /	0.80	0.81		0.81	0.85	f _2.2	0.86		0.89		0.89		0.92		0.92		0.95		0.95		0.95	streak		streak		
p-Hydroxybenz- aldehyde	Resacetophenone	∕o-Methoxvcin-	r namic acid	Vanillyl alcohol	2 4-Hvdroxvace-	tophenone	Resorcinol	Veratraldehvde		2,6-Dimethoxy-	phenol	Hydroquinone	1	Isoeugenol	I	Eugenol		4,4'-Dihydroxy-	biphenyl	Dihydroisoeuge-	nol	Guaiacol		Coumarin	Phloroglucinol	D	Pyrogallol		

PAPER CHROMATOGRAPHY OF PHENOLIC COMPOUNDS

473

 R_F values of some phenolic compounds

Fig. 3 shows a chromatogram of the separation of a mixture of ten compounds, and Table II gives the R_F values for 34 pure phenolic compounds.

SUMMARY

A qualitative method of paper chromatography for phenolic compounds is discussed. Whatman No. 7 paper was impregnated with a saturated solution of boric acid. The solvent used was the organic phase of *n*-butanol saturated with 2% NH₄OH. The time of development was 15 hours.

Beside the classical methods of spot detection, two new processes were employed: (a) ultra-violet examination of the chromatogram after Mäule's test; (b) spraying with a solution of diazotized sulphanilic acid, exposure to ammonia vapours followed by spraying with a solution of diazotized p-nitroaniline.

A table of R_F values of 34 pure phenolic compounds is given, together with methods for their identification.

REFERENCES

- ¹ E. LEDERER AND M. LEDERER, Chromatography, 2nd Ed., Elsevier, Amsterdam, 1957.
- ² E. LEDERER, Chromatographie en chimie organique et biologique, Masson, Paris, 1959.
- ³ W. E. HILLIS AND A. ČARLE, APPITA, 13 (1959) 74.
- ⁴ L. A. GRIFFITHS, Nature, 180 (1957) 286.
- ⁵ D. A. STANEK, *TAPPI*, 41 (1958) 601.
 ⁶ O. GOLDSCHMID, *TAPPI*, 38 (1955) 728.
- 7 M. D. FAHEY AND E. F. KURTH, TAPPI, 40 (1957) 506.
- 8 I. A. PEARL, D. L. BEYER, B. JOHNSON AND S. WILKINSON, TAPPI, 40 (1957) 374.
- ⁹ I. A. PEARL, D. L. BEYER AND B. JOHNSON, *TAPPI*, 41 (1958) 255.
- ¹⁰ I. A. PEARL, D. L. BEYER, S. LEE AND D. LASKOWSKI, TAPPI, 42 (1959) 61.
- ¹¹ I. A. PEARL, D. L. BEYER AND D. LASKOWSKI, TAPPI, 42 (1959) 849.
- 12 L. REIO, J. Chromatog., 1 (1958) 338.

- E. R. B. J. Ohnomanog., 1 (1950) 530.
 E. F. McFARREN, Anal. Chem., 23 (1951) 169.
 J. L. GARDON AND B. LEOPOLD, Pulp & Paper Mag. Can., (1958) T. 148.
 R. J. BLOCK, R. LE STRANGE AND G. ZWEIG, Paper Chromatography, Academic Press, Inc., New York, 1952.
- ¹⁶ H. G. BRAY, W. V. THORPE AND K. WHITE, Biochem. J., 46 (1950) 271.

J. Chromatog., 6 (1961) 467-474

474